Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
5 years IF: 1.036 (® Thomson Reuters)
IF 2016: 1.064 (® Thomson Reuters)
Total Cites: 7140
Follow Us
Follow Us
  • Users Online: 3671
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 130  |  Issue : 8  |  Page : 936-942

Short-term Preoperative Octreotide for Thyrotropin-secreting Pituitary Adenoma


1 Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
2 Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
3 Department of Ultropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
4 Beijing Neurosurgical Institute, Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China

Correspondence Address:
Li-Yong Zhong
Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0366-6999.204098

Rights and Permissions

Background: Thyrotropin-secreting pituitary adenomas (TSHomas) are a rare cause of hyperthyroidism. Somatostatin (SST) analogs work by interacting with somatostatin receptors (SSTRs). This study aimed to evaluate short-term preoperative octreotide (OCT) use in TSHoma patients and to investigate SSTR2 and SSTR5 expression and observe structural changes in tumor tissue. Methods: We reviewed records and samples from eight TSHoma patients treated between July 2012 and July 2015. We tested immunohistochemically for SSTR2/5 expression and examined TSHoma cells for morphological changes. Signed rank sum test was used to compare the efficacy of short-term preoperative OCT treatment. Results: OCT treatment (median time: 7.9 days, range: 3–16 days; median total dose: 1.8 mg, range: 0.9–4.2 mg) led to significant decrease in all patients' thyroid hormone levels (FT3 [nmol/L]: 8.33 [7.02, 12.29] to 4.67 [3.52, 5.37] [P = 0.008]; FT4 [pmol/L]: 25.36 [21.34, 28.99] to 16.66 [14.88, 21.49] [P = 0.016]; and TSH [μU/ml]: 5.80 [4.37, 6.78] to 0.57 [0.19, 1.24] [P = 0.008]). All the eight tumor specimens expressed high SSTR2 protein levels; 5/8 expressed high SSTR5, but 3/8 that expressed low SSTR5 presented a significantly higher TSH suppression rate (P = 0.036). Electron microscopy showed subcellular level impairments, including clumped nuclear chromatin and reduced cytoplasmic volume. Golgi complexes were observed in the OCT-treated TSHoma specimens. Conclusions: OCT can control hormone levels and damage the ultrastructure of tumor cells and organelles. Short-term response to OCT may be related to SSTR5 expression. Preoperative SST analog treatment for TSHoma could be considered as a combination therapy.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed319    
    Printed8    
    Emailed0    
    PDF Downloaded72    
    Comments [Add]    

Recommend this journal

 

京ICP备05052599号