Home About us Articles Multimedia Search Instructions Login 
IF 2017: 1.596 (® Clarivate Analytics)
Total Cites: 7606
Q2 in Medicine, General & Internal
Follow Us
Follow Us
  • Users Online: 6929
  • Home
  • Print this page
  • Email this page

 Table of Contents  
ORIGINAL ARTICLE
Year : 2016  |  Volume : 129  |  Issue : 18  |  Page : 2149-2152

Incidence and Risk Factors of Deep Venous Thrombosis in Asymptomatic Iliac Vein Compression: A Prospective Cohort Study


Department of Vascular Surgery, The Ninth Clinical Medical College of Peking University, Beijing Shijitan Hospital, Beijing 100038, China

Date of Web Publication7-Sep-2016

Correspondence Address:
Fu-Xian Zhang
Department of Vascular Surgery, The Ninth Clinical Medical College of Peking University, Beijing Shijitan Hospital, 10 Tieyi Road, Haidian District, Beijing 100038
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0366-6999.189918

Rights and Permissions
  Abstract 

Background: Deep vein thrombosis (DVT) may be associated with iliac vein compression. Up to now, the majority of data has come from a retrospective study about the correlation between DVT and iliac vein compression. This prospective study was to determine the incidence of DVT in individuals with iliac vein compression and identify risk factors predictive of DVT.
Methods: A total of 500 volunteers without symptoms of venous diseases of lower extremities and overt risk factors of deep venous thrombosis between October 2011 and September 2012 in Shijitan Hospital were enrolled in this cohort study. All the participants underwent contrast-enhanced abdominal computed tomography (CT) to evaluate iliac vein compression. Baseline demographic information and degree of iliac vein compression were collected. They were categorized into ≥50% or <50% iliac vein compression group. Ultrasound examination was performed to screen DVT at the time of CT examination and 3, 6, 9, and 12 months after the examination. Primary event was DVT of ipsilateral lower extremity. Correlation between DVT and iliac vein compression was estimated by multivariate Logistic regression after adjusting for age, gender, malignancy, surgery/immobilization, chemotherapy/hormonal therapy, and pregnancy.
Results: In 500 volunteers, 8.8% (44) had ≥50% iliac vein compression and 91.2% (456) had <50% iliac vein compression. Ipsilateral DVT occurred in six volunteers including two in iliofemoral vein, two in popliteal vein, and two in calf vein within 1 year. Univariate analysis showed that the incidence of DVT was 6.8% in ≥50% compression group, significantly higher than that in <50% compression group (0.7%) (χ2 = 12.84, P = 0.01). Patients with malignancy had significantly higher incidence of DVT than those without malignancy (χ2 = 69.60,P< 0.01). Multivariate Logistic regression indicated that iliac vein compression and malignancy were independent risk factors of DVT. After adjustment for malignancy, patients with ≥50% iliac vein compression had 10-fold increased risk of developing DVT (adjusted relative risk [RR] = 10.162, 95% confidence interval [CI]: 1.149–89.865, P = 0.037). In subgroup analysis, patients with malignancy and ≥50% iliac vein compression had 12-fold increased the risk of DVT than those without malignance and ≥50% compression (RR = 12.389, 95% CI: 2.327–65.957, P = 0.003).
Conclusions: Iliac vein compression is common, but the incidence of DVT is low. Only individuals with ≥50% iliac vein compression or compression combined with other risk factors might have significantly increased the risk of DVT. Further study is recommended to improve prevention strategies for DVT in significant iliac vein compression.

Keywords: Deep Venous Thrombosis; Iliac Vein Compression; Logistic Models


How to cite this article:
Wu MK, Luo XY, Zhang FX. Incidence and Risk Factors of Deep Venous Thrombosis in Asymptomatic Iliac Vein Compression: A Prospective Cohort Study. Chin Med J 2016;129:2149-52

How to cite this URL:
Wu MK, Luo XY, Zhang FX. Incidence and Risk Factors of Deep Venous Thrombosis in Asymptomatic Iliac Vein Compression: A Prospective Cohort Study. Chin Med J [serial online] 2016 [cited 2018 Aug 14];129:2149-52. Available from: http://www.cmj.org/text.asp?2016/129/18/2149/189918


  Introduction Top


The relationship between iliac vein compression and deep vein thrombosis (DVT) was noted in 1851. Virchow found that the incidence of iliofemoral venous thrombosis in left lower limb was 5 times as high as that in the right lower limb.[1] In 1965, Cockett and Thomas [2] pointed out that the iliac venous compression was an important risk factor for the left iliofemoral vein thrombosis.

The precise incidence of DVT in iliac vein compression is little known as there are too many risk factors for DVT. Currently, no standardized diagnostic criteria have been established for iliac vein compression.[3] Most data about the effect of iliac vein compression on DVT came from retrospective studies. This prospective cohort study was conducted to investigate the incidence and risk factors of DVT in various degrees of iliac vein compression without symptoms. It might be more helpful for recognizing the clinical significance of iliac vein compression and improving prophylaxis of DVT in individuals with significant iliac vein compression.


  Methods Top


Volunteers

This prospective study enrolled volunteers without symptoms of venous diseases of lower extremities who underwent contrast-enhanced pelvic or abdominal computed tomography (CT) scans in Beijing Shijitan Hospital because of nonvascular disease from October 2011 to September 2012. The study was approved by the Institutional Review Board of the Beijing Shijitan Hospital. Informed consent was obtained from patients who agreed to participate in this study. The records of routine CT scans performed in our hospital were reviewed for volunteers. As hemodynamically significant, stenosis was usually defined as ≥50% reduction of the lumen diameter, the volunteers were categorized into ≥50% compression or <50% compression group by the degree of iliac vein compression.

The inclusion criteria were (1) aged over 18 years and (2) underwent contrast-enhanced pelvic or abdominal CT examination for nonvascular diseases. The exclusion criteria were (1) history of DVT or chronic venous diseases; (2) symptoms of DVT or chronic venous insufficiency in lower extremity; (3) inferior vena cava involved compression; (4) congenital vein malformation; (5) inherited coagulation abnormality; (6) major trauma or abdominal surgery within 1 year; (7) tumors compressing the iliac vein; (8) cardiac, renal, or pulmonary dysfunction; (9) long-term bedridden or disabled patients; and (10) follow-up time shorter than 1 year.

Measurement of iliac vein compression

A high precise calibration tool of CT image digital films (Duen System UniSight, Beijing Duen Information System Co., Ltd., Beijing, China) was used to measure the diameter of the left common iliac vein [Figure 1]. The degree of compression was calculated by the ratio of the minimal anterioposterior diameter to an average diameter of common iliac vein [Figure 2].
Figure 1: Iliac vein compression. The left iliac vein was compressed by the right iliac artery and the fifth lumbar vertebral body (arrow).

Click here to view
Figure 2: Calculation of degree of iliac vein compression. Degree of iliac vein compression = (1 - D2/[D1 + D3 + D4] ÷3) ×100%. D1, D3, D4: The anterior--posterior diameter of the left common iliac vein in before, after and distant segment; D2: The anterior--posterior diameter of the left common iliac vein in the compressed sit.

Click here to view


Definition of deep vein thrombosis and underlying risk factors

DVT was diagnosed through ultrasound imaging with or without symptoms.[4] Risk factors included age, gender, surgery/immobilization, chemotherapy/hormonal therapy, and pregnancy. Grading of risks factors for DVT was mainly based on the criteria of standard reports of Society of Vascular Surgery: age ≥60 years, surgery >3 h, immobilization >3 days.[5]

Follow-up

Duplex ultrasound surveillance of lower extremity veins was performed at the time of CT examination and 3, 6, and 12 months after the examination.

Statistical analysis

Chi-square test was used for univariate analysis. Multivariate stepwise Logistic regression was used to examine the effect of iliac vein compression on the development of DVT, which was determined by the adjusted relative risk (RR) with a 95% confidence interval (CI). A two-tailed P < 0.05 was considered statistically significant. All statistical analyses were performed using the SPSS 16.0 software (SPSS Inc., Chicago, IL, USA).


  Results Top


Five hundred and twenty asymptomatic volunteers were eligible for enrollment among 626 candidates. Five hundred volunteers (96.2%) were followed for 1 year. Demographic characteristics are shown in [Table 1]. The mean age of the patients was 55.4 ± 14.7 years (range: 18–89 years). There were 272 men (54.4%) and 228 women (45.6%). The degree of compression ranged from 0% to 72.6% with a median of 16.2%. Forty-four (8.8%) volunteers had ≥50% iliac vein compression and 189 (37.8%) had ≥25% iliac vein compression.
Table 1: Demographic characteristics of the volunteers with/without iliac vein compression syndrome

Click here to view


Six volunteers (1.2%) developed DVT involving eight lower extremities within 1 year. Ipsilateral DVT occurred in six volunteers including two in iliofemoral vein, two in femoropopliteal vein, and two in calf vein. One patient had bilateral calf vein thrombosis, but only left iliac vein was compressed. One patient had bilateral femoropopliteal vein thrombosis with only left iliac vein compression.

During a one-year follow-up, malignancy was detected in 18 volunteers including four cases of lung cancer, three of ovarian cancer, two of cervical cancer, two of pancreatic cancer, two of breast cancer, two of gastric cancer, two of ureteral cancer, and one of hepatic cancer. Fifty-one volunteers had surgery or immobilization. Eighty-seven volunteers received chemotherapy or hormonal therapy including oral contraceptive. Six were pregnant.

The incidence of DVT was 6.8% in ≥50% compression group and 0.7% in <50% compression group. The results of univariate analysis are shown in [Table 2]. The incidence of DVT was significantly higher in volunteers with ≥50% compression than that in those with <50% compression (χ2 = 12.84, P = 0.01). Patients with malignancy (22.2%) had a significantly higher incidence than those without malignancy (0.4%) (χ2 = 69.60, P < 0.01). Age (χ2 = 1.00, P = 0.43), gender (χ2 = 0.05, P = 1.00), surgery/immobilization (χ2 = 0.28, P = 0.48), chemotherapy/hormonal therapy (χ2 = 4.49, P = 0.07), and pregnancy (χ2 = 12.25, P = 0.07) were not significant risk factors.
Table 2: Univariate analysis for predictors of DVT

Click here to view


Multivariate stepwise Logistic regression showed that iliac vein compression and malignancy were independent risk factors of DVT [Table 3]. After adjustment for malignancy, ≥50% iliac vein compression had 12-fold increased risk factors of DVT than <50% iliac vein compression (adjusted RR =12.389, 95% CI: 2.327–65.957, P = 0.003).
Table 3: Multivariate analysis for predictors of DVT

Click here to view



  Discussion Top


Iliac vein compression is not uncommon in the general population.[6],[7] Baron et al.[8] reported about 20% of adults had iliac vein compression. Liu et al.[9] reported that the prevalence of iliac vein compression syndrome (IVCS) in their cohort was 14.8%. Wolpert et al.[10] performed magnetic resonance venography in 24 patients with isolated left leg edema and found that 37% patients had IVCS. Kibbe et al.[11] investigated fifty volunteers without venous related symptoms or signs and found that 24% had >50% left iliac venous compression and 66% had >25% compression. This study also showed that 37.8% had ≥25% iliac vein compression, and 8.8% had ≥50% compression.

Many reports demonstrated that most patients with left iliofemoral thrombosis had iliac vein compression.[12] However, most of them were retrospective studies. The real stenosis of iliac vein is difficult to define precisely as the vein thrombosis. That is the reason why we conducted the prospective study to investigate the incidence of DVT in individuals with iliac vein compression. Approximately, 70–80% of iliac veins develop a variable degree of obstruction following an episode of acute DVT.[13] DVT is caused by the mechanical obstruction of the left common iliac vein by the right common iliac artery, resulting in stasis rather than a primary hypercoagulable state.[14] However, the incidence of DVT is low in iliac vein compression. The variant exists in a significant portion of the population but is usually asymptomatic.[15] In this study, only 6.8% developed DVT. Greater than 50% compression was an independent risk factor in the multivariate analysis, indicating that DVT may be associated with significant compression. This is consistent with another study.[16]

Volunteers were recruited in one medical center, hence, bias may be present for this prospective study. Although there are many risk factors for DVT, the goal of the present study was to observe the incidence of DVT in variable iliac vein compression. It was not surprising to find a high incidence of malignancy in this study. We just considered it as one of the risk factors for DVT combined with iliac vein compression. In this study, the relationships between deep venous thrombosis and other risk factors such age, gender, malignancy, and surgery were also assessed. Univariate analysis showed that malignancy was a significant risk factor. Multivariate analysis suggested that iliac vein compression and malignancy were independent risk factors. This might be due to the selection criteria of volunteers. Those with the overt risk of thrombosis had been excluded at the time of recruitment. Since our hospital is a cancer center, patients might come to undergo CT scanning for tumor. Malignancy becomes the primary risk factor for DVT. The contribution of chemotherapy or surgery to DVT could be concealed by malignancy due to the interactive effect. Although significant iliac vein compression was an independent risk factor for DVT, it seems that significant iliac vein compression combined with other risk factors would have more increased risk of DVT.[17] Now that the malignancy is a strong risk factor, the effect of iliac vein compression might be underestimated.

Venous thromboembolism including DVT and pulmonary embolism becomes the second cause of death in cancer.[18] There were several biomarkers and predictive models to assess the risk of venous thromboembolism in patients with cancer,[19] but none of them refer to iliac vein compression.[20] More targeted prophylaxis of venous thromboembolism in cancer patients could reduce mortality and morbidity. Once significant iliac vein compression is detected in malignancy, active prevention of DVT should be advocated. However, the incidence of DVT in iliac vein compression was low, so the cost-effectiveness of screening iliac vein compression for prediction of DVT needs to be further studied.

In summary, iliac vein compression is not uncommon, but the incidence of DVT is low. Only patients with ≥50% iliac vein compression or compression combined with other risk factors may have significantly increased risk of DVT. Further study is recommended to improve prevention strategies for DVT in patients with significant iliac vein compression.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
  References Top

1.
Virchow R. Uber die Erweiterung kleiner Gefasse. Arch Pathol Anat 1851;3:427-62.  Back to cited text no. 1
    
2.
Cockett FB, Thomas ML. The iliac compression syndrome. Br J Surg 1965;52:816-21.  Back to cited text no. 2
[PUBMED]    
3.
Brinegar KN, Sheth RA, Khademhosseini A, Bautista J, Oklu R. Iliac vein compression syndrome: Clinical, imaging and pathologic findings. World J Radiol 2015;7:375-81. doi: 10.4329/wjr.v7.i11.375.  Back to cited text no. 3
[PUBMED]    
4.
Butros SR, Liu R, Oliveira GR, Ganguli S, Kalva S. Venous compression syndromes: Clinical features, imaging findings and management. Br J Radiol 2013;86:20130284. doi: 10.1259/bjr. 20130284.  Back to cited text no. 4
[PUBMED]    
5.
Porter JM, Moneta GL. Reporting standards in venous disease: An update. International Consensus Committee on Chronic Venous Disease. J Vasc Surg 1995;21:635-45.  Back to cited text no. 5
[PUBMED]    
6.
Lugo-Fagundo C, Nance JW, Johnson PT, Fishman EK. May-Thurner syndrome: MDCT findings and clinical correlates. Abdom Radiol (NY) 2016. [Epub ahead of print]. doi: 10.1007/s00261-016-0793-9.  Back to cited text no. 6
    
7.
Zhang X, Shi X, Gao P, Wang J, Li S, Yao S, et al. Endovascular management of May-Thurner syndrome: A case report. Medicine (Baltimore) 2016;95:e2541. doi: 10.1097/MD.0000000000002541.  Back to cited text no. 7
[PUBMED]    
8.
Baron HC, Shams J, Wayne M. Iliac vein compression syndrome: A new method of treatment. Am Surg 2000;66:653-5.  Back to cited text no. 8
[PUBMED]    
9.
Liu Z, Gao N, Shen L, Yang J, Zhu Y, Li Z, et al. Endovascular treatment for symptomatic iliac vein compression syndrome: A prospective consecutive series of 48 patients. Ann Vasc Surg 2014;28:695-704. doi: 10.1016/j.avsg.2013.05.019.  Back to cited text no. 9
[PUBMED]    
10.
Wolpert LM, Rahmani O, Stein B, Gallagher JJ, Drezner AD. Magnetic resonance venography in the diagnosis and management of May-Thurner syndrome. Vasc Endovascular Surg 2002;36:51-7. doi: 10.1177/153857440203600109.  Back to cited text no. 10
[PUBMED]    
11.
Kibbe MR, Ujiki M, Goodwin AL, Eskandari M, Yao J, Matsumura J. Iliac vein compression in an asymptomatic patient population. J Vasc Surg 2004;39:937-43. doi: 10.1016/j.jvs.2003.12.032.  Back to cited text no. 11
[PUBMED]    
12.
Mathur M, Cohen M, Bashir R. May-Thurner syndrome. Circulation 2014;129:824-5. doi: 10.1161/CIRCULATIONAHA.113.004739.  Back to cited text no. 12
[PUBMED]    
13.
Mahnken AH, Thomson K, de Haan M, O'Sullivan GJ. CIRSE standards of practice guidelines on iliocaval stenting. Cardiovasc Intervent Radiol 2014;37:889-97. doi: 10.1007/s00270-014-0875-4.  Back to cited text no. 13
[PUBMED]    
14.
Fasanya AA, LaCapra G. May-Thurner syndrome with pulmonary embolism as the first presentation rather than deep vein thrombosis. Cureus 2016;8:e509. doi: 10.7759/cureus.509.  Back to cited text no. 14
[PUBMED]    
15.
Woo EJ, Ogilvie RA, Krueger VS, Lundin M, Williams DM. Iliac vein compression syndrome from anterior perforation of a pedicle screw. J Surg Case Rep 2016;2016. pii: Rjw003. doi: 10.1093/jscr/rjw003.  Back to cited text no. 15
    
16.
Chen F, Den J, Yuan QW, Zhou WM, Xiong JX, Zhou W. Compression of left common iliac vein is independently associated with left-sided deep vein thrombosis. J Vasc Surg Venous Lymphat Disord 2013;1:364-9. doi: 10.1016/j.jvsv.2013.05.001.  Back to cited text no. 16
[PUBMED]    
17.
Xue GH, Huang XZ, Ye M, Liang W, Zhang H, Zhang JW, et al. Catheter-directed thrombolysis and stenting in the treatment of iliac vein compression syndrome with acute iliofemoral deep vein thrombosis: Outcome and follow-up. Ann Vasc Surg 2014;28:957-63. doi: 10.1016/j.avsg.2013.11.012.  Back to cited text no. 17
[PUBMED]    
18.
Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost 2007;5:632-4. doi: 10.1111/j.1538-7836.2007.02374.x.  Back to cited text no. 18
[PUBMED]    
19.
Heit JA, Silverstein MD, Mohr DN, Petterson TM, O'Fallon WM, Melton LJ 3rd. Risk factors for deep vein thrombosis and pulmonary embolism: A population-based case-control study. Arch Intern Med 2000;160:809-15. doi: 10.1001/archinte.160.6.809.  Back to cited text no. 19
[PUBMED]    
20.
Ay C, Dunkler D, Marosi C, Chiriac AL, Vormittag R, Simanek R, et al. Prediction of venous thromboembolism in cancer patients. Blood 2010;116:5377-82. doi: 10.1182/blood-2010-02-270116.  Back to cited text no. 20
[PUBMED]    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]


This article has been cited by
1 Faecal impaction causing bilateral pelvic venous thrombosis
Maxime Dewulf,Yves Blomme,Cedric Coucke
Acta Chirurgica Belgica. 2017; : 1
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Methods
Results
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed2701    
    Printed13    
    Emailed0    
    PDF Downloaded699    
    Comments [Add]    
    Cited by others 1    

Recommend this journal




京ICP备05052599号