Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
5 years IF: 1.036 (® Thomson Reuters)
IF 2016: 1.064 (® Thomson Reuters)
Total Cites: 7140
Follow Us
Follow Us
  • Users Online: 530
  • Home
  • Print this page
  • Email this page

 Table of Contents  
ORIGINAL ARTICLE
Year : 2015  |  Volume : 128  |  Issue : 15  |  Page : 2040-2044

Study of Individual Characteristic Abdominal Wall Thickness Based on Magnetic Anchored Surgical Instruments


1 Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
2 School of Mechatronics Engineering, State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

Date of Submission07-Mar-2015
Date of Web Publication23-Jul-2015

Correspondence Address:
Yi Lyu
Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061
China
Login to access the Email id

Source of Support: This work was supported by a grant from National Natural Science Foundation of China (Major Instrumental Program, No. 81127005)., Conflict of Interest: None


DOI: 10.4103/0366-6999.161360

Rights and Permissions
  Abstract 

Background: Magnetic anchored surgical instruments (MASI), relying on magnetic force, can break through the limitations of the single port approach in dexterity. Individual characteristic abdominal wall thickness (ICAWT) deeply influences magnetic force that determines the safety of MASI. The purpose of this study was to research the abdominal wall characteristics in MASI applied environment to find ICAWT, and then construct an artful method to predict ICAWT, resulting in better safety and feasibility for MASI.
Methods: For MASI, ICAWT is referred to the thickness of thickest point in the applied environment. We determined ICAWT through finding the thickest point in computed tomography scans. We also investigated the traits of abdominal wall thickness to discover the factor that can be used to predict ICAWT.
Results: Abdominal wall at C point in the middle third lumbar vertebra plane (L3) is the thickest during chosen points. Fat layer thickness plays a more important role in abdominal wall thickness than muscle layer thickness. "BMI-ICAWT" curve was obtained based on abdominal wall thickness of C point in L3 plane, and the expression was as follow: f(x) = P1 × x 2 + P2 × x + P3, where P1 = 0.03916 (0.01776, 0.06056), P2 = 1.098 (0.03197, 2.164), P3 = −18.52 (−31.64, −5.412), R-square: 0.99.
Conclusions: Abdominal wall thickness of C point at L3 could be regarded as ICAWT. BMI could be a reliable predictor of ICAWT. In the light of "BMI-ICAWT" curve, we may conveniently predict ICAWT by BMI, resulting a better safety and feasibility for MASI.

Keywords: Individual Characteristic Abdominal Wall Thickness; Magnetic Anchored Surgical Instruments; Minimally Invasive Surgery


How to cite this article:
Dong DH, Liu WY, Feng HB, Fu YL, Huang S, Xiang JX, Lyu Y. Study of Individual Characteristic Abdominal Wall Thickness Based on Magnetic Anchored Surgical Instruments. Chin Med J 2015;128:2040-4

How to cite this URL:
Dong DH, Liu WY, Feng HB, Fu YL, Huang S, Xiang JX, Lyu Y. Study of Individual Characteristic Abdominal Wall Thickness Based on Magnetic Anchored Surgical Instruments. Chin Med J [serial online] 2015 [cited 2017 Nov 22];128:2040-4. Available from: http://www.cmj.org/text.asp?2015/128/15/2040/161360


  Introduction Top


Operation is the most important part of surgical treatment. Traditional operation means open surgery, which believes big scar, big surgeon. With the appearance of laparoscopy, minimally invasive surgery (MIS) opened a new era for surgery. [1],[2] In order to get a smaller invasion, surgeons invented laparoendoscopic single-site surgery (LESS) and natural orifice transluminal endoscopic surgery (NOTES). Both of them reduced the numbers of transabdominal port sites and the limited access to the unconspicuous position. The single port approach made LESS and NOTES have potential benefits for patients, such as less pain and better wound cosmesis. [3],[4],[5] However, limitations of single port approach could not be neglected, including insufficient force torque, loss of triangulation, and an uncomfortable working angle of instruments. [6],[7],[8]

Cadeddu et al. [9] firstly presented a technology that termed magnetic anchoring and guidance system (MAGS) to overcome such shortages of single port approach in 2007. Thereafter, many magnetic anchored surgical instruments (MASI) have emerged, most of which were camera, dissector, and retractor instruments. [9],[10],[11],[12],[13],[14],[15] MASI is typically consisted of intra- and extra-corporeal magnets. The magnets could generate coupling force at a length that makes MASI free from trocar in the abdominal cavity, resulting in an appropriate triangulation and working angle. In brief, MASI would lead future development of MIS. [16],[17],[18],[19]

However, widespread clinical application of MASI is still unclear. Open operation would be inevitable if MASI "drop out" from the abdominal wall. This seriously adverse event would occur when MASI is applied on an extremely thick abdominal wall because magnetic attraction forces exponentially diminish over distance. [20],[21] Therefore, abdominal wall, especially for individual characteristic abdominal wall thickness (ICAWT), plays a key role in the safety of MASI. In other words, a convenient approach to predict each patient's ICAWT is needed to guide the design and application of MASI. Unfortunately, little work regarding the prediction of ICAWT has been done, which caused a current dilemma.

In order to enhance the safety and feasibility of MASI, the purpose of this study was to determine ICAWT in MASI applied scenario and produce an artful way to predict each patient's ICAWT.


  Methods Top


Since magnetic forces exponentially diminish over distance, ICAWT should be the maximum thickness of abdominal wall in MASI applied scenario. In this work, we determined ICAWT through finding the thickest point in MASI's applied environment by computed tomography (CT) scans. Then we discovered body mass index (BMI) might have a close relationship with ICAWT by investigating the traits of abdominal wall. Ultimately, we construct "BMI-ICAWT" curve to predict each patient's ICAWT. This curve could make the clinical application of MASI more precise and safer.

Patients

The study was approved by the Ethics Committee of First Affiliated Hospital of Xi'an Jiaotong University and informed consent was obtained from all the participating patients.

Between September 2012 and November 2012, 60 patients from Department of Hepatobiliary Surgery in First Affiliated Hospital of Xi'an Jiaotong University were chosen as Group 1 (30 men, 30 women, aged from 20 to 70 years, median age of 42 years). In Group 1, the thickness of abdominal wall, muscle layer, and fat layer at chosen points was measured to characterize the thickest point at MASI's applied environment and explore the factor that deeply influenced the abdominal wall thickness. The thickness of the thickest point could be defined as ICAWT. Between December 2012 and February 2013, 60 patients from Department of Hepatobiliary Surgery in First Affiliated Hospital of Xi'an Jiaotong University were chosen as Group 2 (30 men, 30 women, aged from 28 to 75 years, median age of 46 years). In Group 2, each patient's ICAWT and BMI were measured to construct "BMI-ICAWT" curve. The baseline information of the patients in Group 1 and Group 2 is shown in [Table 1].
Table 1: The baseline information of the patients

Click here to view


Choice of measuring plane and point

The thickness of abdominal wall, muscle layer, and fat layer was measured through CT scans. Based on MASI applied scenario, from cranial side to caudal side, we chose five planes to measure: The second porta hepatis plane (P2), the first porta hepatis plane (P1), the middle first lumbar vertebra plane (L1), the middle second lumbar vertebra plane (L2), and the middle third lumbar vertebra plane (L3). At each plane, from left to right, we chose three specific points, named C, D, and E. The methods of choosing specific points are shown in [Figure 1].
Figure 1: The methods of choosing specific points at chosen plane: BF is the transverse diameter; P and Q are third points of BF which are automatically generated by imaging software; O is the midpoint of BF; AC passes P, GE passes Q, OD passes O and they are all perpendicular to BF; AC, GE, and OD cross anterior abdominal wall at C, E and D respectively; C, D, and E are chosen points.

Click here to view


Measure of thickness of abdominal wall, muscle layer, and fat layer

The images of MASI's applied environment were obtained through a 64-slice CT unit (Philips, Amsterdam, The Netherlands). According to the characteristic of abdominal CT scans, the imaging software (provided by CT unit) was used to measure the abdominal wall thickness at chosen points. For each point, the thickness of muscle layer and fat layer was also measured, respectively, due to the difference in CT value. Afterward, "abdominal wall thickness-plane" curve, "muscle layer thickness-plane" curve, and "fat layer thickness-plane" curve for point C, D, and E were obtained. These curves were used to find the thickest point and study the traits of abdominal wall in MASI's applied environment.

Statistical analysis

SPSS 18.0 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis. The mean and standard deviation (SD) of thickness for each layer at chosen points were acquired, which is needed for the construction of "thickness-plane" curves.

"Body mass index-individual characteristic abdominal wall thickness" curve

Based on prior trials in Group 2, BMI could be a good predictor of ICAWT. The BMI for a person was defined as their body mass divided by the square of their height. Then "BMI-ICAWT" curve was fit by polyfit module of software MATLAB (R2012a [7.14.0.739], MathWorks, USA), and function expression of the curve was also obtained.


  Results Top


Through the trial based on Group 1, the thickness of abdominal wall, muscle layer, and fat layer at chosen points was measured. The thickness data for point C, D, and E are shown in [Table 2]. We also obtain "abdominal wall thickness-plane" curve, "muscle layer thickness-plane" curve and "fat layer thickness-plane" curve for point C, D, and E shown in [Figure 2]. According to these curves, we observed that: For abdominal wall: (1) The thickness was symmetrical and the ventrimeson was symmetry axis; (2) the thickness of both lateral points was larger than the middle one; (3) the lower the plane was, the thicker it became; (4) the thickness of the abdominal wall at point C in plane L3 was the largest in chosen points. For muscle layer: (1) It shared the same symmetric characteristics with abdominal wall; (2) it was thinner in lower plane that was opposite to the law of abdominal wall; (3) muscle layer was thinner than fat layer. For fat layer: (1) It shared the same symmetric characteristics with abdominal wall; (2) it was thicker in lower plane that was in line with abdominal wall; (3) fat layer was thicker than muscle layers.
Figure 2: The "thickness-plane" lines for chosen points. (a) The "abdominal wall thickness-plane" line for chosen points. (b) The "muscle layer thickness-plane" line for chosen points. (c) The "fat layer thickness-plane" line for chosen points.

Click here to view
Table 2: Thickness data for points C, D, and E (mean ± SD, mm, n=60)

Click here to view


In sum, point C in plane L3 was the thickest point in MASI applied scenario, so we can define the thickness of point C as ICAWT. Compared with muscle layer, fat layer was thicker and shared the same law with the abdominal wall in thickness changing, so it played a crucial role in abdominal wall thickness. In addition, BMI was closely related to the fat layer thickness, so we chose BMI as a predictor of ICAWT.

According to the trial based on Group 2, we got 60 patients' ICAWT and their BMI. Using these data, we obtained "BMI-ICAWT" curve [Figure 3]. The function expression was as follows: f(x) = P1 × x 2 + P2 × x + P3, where P1 = 0.03916 (0.01776, 0.06056), P2 = 1.098 (0.03197, 2.164), P3 = −18.52 (−31.64, −5.412), R-square: 0.99. By this function expression, simply relied on BMI, we can gain patient's ICAWT to enhance the safety and feasibility of MASI.
Figure 3: "BMI-ICAWT" curve. BMI: body mass index; ICAWT: individual characteristic abdominal wall thickness.

Click here to view



  Discussion Top


Due to the features of magnetic coupling force, MASI can be free from trocar position and make full use of abdominal cavity, leading a better triangulation and working angle for instruments. It is a promising solution to meet the challenges of NOTES and LESS. [8],[11],[14],[15] However, because of lacking necessary information about the individual abdominal wall, the design and application of MASI were unspecific. As a result, many scholars suspected the safety of MASI for the risk of "drop out," which can be caused by the variation in abdominal wall thickness from people to people. [20],[21] Only under deep study on the abdominal wall can we expect a bright future for MASI.

The magnetic strength is mainly determined by the distance and magnetic conductivity between two magnets. As to abdominal wall, the magnetic strength influences magnetic attraction in two fields: One is the thickness, which decides the distance between intra- and extra-corporeal magnet; the other one is the magnetic conductivity. The abdominal wall is primarily consisted of fat and muscle, and both of them have the similar magnetic conductivity with air. [22] What's more, the magnetic strength exponentially increases or decreases with the distance change. Therefore, the thickness of the abdominal wall is the most valuable information for the design and application of MASI.

Previous studies about abdominal wall thickness based on MASI were focused on the wave range, [21],[22],[23],[24] because a widely accepted view was that individual abdominal wall thickness should be a wave range, not an exact value. However, in order to enhance the safety and feasibility of MASI, an exact value of thickness is needed because it can be used to guide the design and application of MASI for every individual. In our study, we provided a novel conception to define this exact value, ICAWT. ICAWT is the maximum thickness in MASI applied scenario, and also is the most difficult part for MASI to anchor and guide according to magnetic traits. In this study, we demonstrated that point C at L3 was the thickest one at MASI applied environment. In sum, ICAWT could be defined as the thickness of point C at L3.

The limited functions made MASI still apply at simple operations, such as gallbladder resection, liver biopsy, and so on. [12],[13],[14] Therefore, MASI applied scenario was mainly at upper abdomen area which is higher than umbilicus. To avoid omission, we chose L3 as the lowest plane to investigate, which was obvious lower than umbilicus. We also chose three specific points at each plane to enrich the data. The abdominal wall is principally composed of fat layer and muscle layer. Our data suggested that in MASI applied scenario, the change law of fat layer thickness was similar to abdominal wall thickness, but the change law of muscle layer thickness was opposite. Moreover, the thickness of the fat layer was apparently much thicker than muscle layer. Therefore, fat layer thickness at thickest point might be used to predict ICAWT. Furthermore, fat layer thickness had a close relationship with individual obesity level, and BMI was a simple and effective index to reflect individual obesity level. [25],[26] Hence, BMI could be a predictor for the ICAWT. In our study, we creatively constructed "BMI-ICAWT" curve to predict ICAWT by BMI. This method made a significant improvement in measuring abdominal wall thickness compared with previous methods, such as ultrasound scanner and spinal needle, which need an extra load of examinations and are more expensive. As a result, "BMI-ICAWT" curve might be a more convenient approach for surgeons to get patient's ICAWT, which is critical to guide specific design and application of MASI and enhance its safety and feasibility.

It is important to note that ascites and hydrothorax would disturb the relationship between BMI and ICAWT, so our theory is not suitable for such patients. In this study, the "BMI-ICAWT" curve was constructed according to the abdominal wall thickness of East Asians, so it was uncertain whether this curve could be used for other races. In addition, the difference between male and female regarding the abdominal wall thickness should also be considered, which was limited by the sample size in current research. Future study about "BMI-ICAWT" curve should recruit a larger sample size to investigate the difference between races and sex. At the same time, our future work would also focus on finding other predictor of ICAWT, such as abdomen circumference that may be more convenient.

In conclusion, ICAWT is a significant factor to guide the design and application of MASI, and it can be defined as the thickness of point C at L3, which is the thickest point in MASI applied scenario. Since fat layer deeply influences abdominal thickness, BMI can be regarded as a predictor of ICAWT. "BMI-ICAWT" curve presented in this study provides an easy approach for surgeons to predict each patient's ICAWT by BMI, which would lead a safer application of MASI and prompt the development of MIS.

 
  References Top

1.
Cooperman AM. Laparoscopic cholecystectomy for severe acute, embedded, and gangrenous cholecystitis. J Laparoendosc Surg 1990;1:37-40.  Back to cited text no. 1
[PUBMED]    
2.
Cuschieri A, Dubois F, Mouiel J, Mouret P, Becker H, Buess G, et al. The European experience with laparoscopic cholecystectomy. Am J Surg 1991;161:385-7.  Back to cited text no. 2
[PUBMED]    
3.
Allori AC, Leitman IM, Heitman E. Natural orifice transluminal endoscopic surgery: Lessons learned from the laparoscopic revolution. Arch Surg 2008;143:333-4.  Back to cited text no. 3
[PUBMED]    
4.
Marescaux J, Dallemagne B, Perretta S, Wattiez A, Mutter D, Coumaros D. Surgery without scars: Report of transluminal cholecystectomy in a human being. Arch Surg 2007;142:823-6.  Back to cited text no. 4
[PUBMED]    
5.
Canes D, Berger A, Aron M, Brandina R, Goldfarb DA, Shoskes D, et al. Laparo-endoscopic single site (LESS) versus standard laparoscopic left donor nephrectomy: Matched-pair comparison. Eur Urol 2010;57:95-101.  Back to cited text no. 5
[PUBMED]    
6.
Jeon HG, Jeong W, Oh CK, Lorenzo EI, Ham WS, Rha KH, et al. Initial experience with 50 laparoendoscopic single site surgeries using a homemade, single port device at a single center. J Urol 2010;183:1866-71.  Back to cited text no. 6
[PUBMED]    
7.
Pérez-Duarte FJ, Lucas-Hernández M, Matos-Azevedo A, Sánchez-Margallo JA, Díaz-Güemes I, Sánchez-Margallo FM. Objective analysis of surgeons' ergonomy during laparoendoscopic single-site surgery through the use of surface electromyography and a motion capture data glove. Surg Endosc 2014;28:1314-20.  Back to cited text no. 7
    
8.
Zeltser IS, Bergs R, Fernandez R, Baker L, Eberhart R, Cadeddu JA. Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model. J Urol 2007;178:288-91.  Back to cited text no. 8
[PUBMED]    
9.
Cadeddu J, Fernandez R, Desai M, Bergs R, Tracy C, Tang SJ, et al. Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single-site surgery: Initial human experience. Surg Endosc 2009;23:1894-9.  Back to cited text no. 9
    
10.
Raman JD, Bergs RA, Fernandez R, Bagrodia A, Scott DJ, Tang SJ, et al. Complete transvaginal NOTES nephrectomy using magnetically anchored instrumentation. J Endourol 2009;23:367-71.  Back to cited text no. 10
[PUBMED]    
11.
Keller J, Fibbe C, Volke F, Gerber J, Mosse AC, Reimann-Zawadzki M, et al. Remote magnetic control of a wireless capsule endoscope in the esophagus is safe and feasible: Results of a randomized, clinical trial in healthy volunteers. Gastrointest Endosc 2010;72:941-6.  Back to cited text no. 11
[PUBMED]    
12.
Lehman AC, Dumpert J, Wood NA, Redden L, Visty AQ, Farritor S, et al. Natural orifice cholecystectomy using a miniature robot. Surg Endosc 2009;23:260-6.  Back to cited text no. 12
[PUBMED]    
13.
Hawks JA, Rentschler ME, Farritor S, Oleynikov D, Platt SR. A modular wireless in vivo surgical robot with multiple surgical applications. Stud Health Technol Inform 2009;142:117-21.  Back to cited text no. 13
[PUBMED]    
14.
Best SL, Bergs R, Scott DJ, Fernandez R, Mashaud LB, Cadeddu JA. Solo surgeon laparo-endoscopic single site nephrectomy facilitated by new generation magnetically anchored and guided systems camera. J Endourol 2012;26:214-8.  Back to cited text no. 14
[PUBMED]    
15.
Joseph RA, Salas NA, Donovan MA, Reardon PR, Bass BL, Dunkin BJ. Single-site laparoscopic (SSL) cholecystectomy in human cadavers using a novel percutaneous instrument platform and a magnetic anchoring and guidance system (MAGS): Reestablishing the "critical view". Surg Endosc 2012;26:149-53.  Back to cited text no. 15
    
16.
Tracy CR, Raman JD, Cadeddu JA, Rane A. Laparoendoscopic single-site surgery in urology: Where have we been and where are we heading? Nat Clin Pract Urol 2008;5:561-8.  Back to cited text no. 16
[PUBMED]    
17.
Raman JD, Scott DJ, Cadeddu JA. Role of magnetic anchors during laparoendoscopic single site surgery and NOTES. J Endourol 2009;23:781-6.  Back to cited text no. 17
[PUBMED]    
18.
Han WK, Tan YK, Olweny EO, Yin G, Liu ZW, Faddegon S, et al. Comparison between magnetic anchoring and guidance system camera-assisted laparoendoscopic single-site surgery nephrectomy and conventional laparoendoscopic single-site surgery nephrectomy in a porcine model: Focus on ergonomics and workload profiles. J Endourol 2013;27:490-6.  Back to cited text no. 18
[PUBMED]    
19.
Best SL, Kabbani W, Scott DJ, Bergs R, Beardsley H, Fernandez R, et al. Magnetic anchoring and guidance system instrumentation for laparo-endoscopic single-site surgery/natural orifice transluminal endoscopic surgery: Lack of histologic damage after prolonged magnetic coupling across the abdominal wall. Urology 2011;77:243-7.  Back to cited text no. 19
[PUBMED]    
20.
Scott DJ, Tang SJ, Fernandez R, Bergs R, Goova MT, Zeltser I, et al. Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments. Surg Endosc 2007;21:2308-16.  Back to cited text no. 20
[PUBMED]    
21.
Best SL, Bergs R, Gedeon M, Paramo J, Fernandez R, Cadeddu JA, et al. Maximizing coupling strength of magnetically anchored surgical instruments: How thick can we go? Surg Endosc 2011;25:153-9.  Back to cited text no. 21
[PUBMED]    
22.
Simi M, Ciuti G, Tognarelli S. Magnetic link design for a robotic laparoscopic camera. J Appl Phys 2010;107:09B302.  Back to cited text no. 22
    
23.
Milad MP, Terkildsen MF. The spinal needle test effectively measures abdominal wall thickness before cannula placement at laparoscopy. J Am Assoc Gynecol Laparosc 2002;9:514-8.  Back to cited text no. 23
[PUBMED]    
24.
Song C, Alijani A, Frank T, Hanna GB, Cuschieri A. Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surg Endosc 2006;20:987-90.  Back to cited text no. 24
[PUBMED]    
25.
Silveira LS, Monteiro PA, Antunes Bde M, Seraphim PM, Fernandes RA, Christofaro DG, et al. Intra-abdominal fat is related to metabolic syndrome and non-alcoholic fat liver disease in obese youth. BMC Pediatr 2013;13:115.  Back to cited text no. 25
[PUBMED]    
26.
Rabkin SW. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: A systematic review and meta-analysis. Metab Syndr Relat Disord 2014;12:31-42.  Back to cited text no. 26
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 Development of an in vivo visual robot system with a magnetic anchoring mechanism and a lens cleaning mechanism for laparoendoscopic single-site surgery (LESS)
Haibo Feng,Dinghui Dong,Tengfei Ma,Jinlei Zhuang,Yili Fu,Yi Lv,Liyi Li
The International Journal of Medical Robotics and Computer Assisted Surgery. 2017; : e1791
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Methods
Results
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed492    
    Printed19    
    Emailed0    
    PDF Downloaded143    
    Comments [Add]    
    Cited by others 1    

Recommend this journal




京ICP备05052599号